

HPSPX-2 Differential pressure PI controller

The HPSP -2 series are high resolution differential pressure controllers. The integrated PI control with anti-windup function offers the possibility to directly control EC motors / fans. They are equipped with a fully digital state-of-the-art pressure transducer designed for a wide range of applications. Zero point calibration and Modbus registers reset can be executed via a tact switch. They also feature integrated K-factor and an analogue / modulating output (0-10)VDC / 0-20 mA / 0-100 % PWM). All parameters are accessible via Modbus RTU (3SModbus software or Sensistant).

Key features

- Built-in digital high resolution differential pressure sensor
- Air velocity detection (by using an external PSET-PTX-200 Pitot tube connection set)

HPS

- Variety of operating ranges
- Selectable response time: 0,1-10 s
- Implemented K-factor

- Differential pressure, air volume⁽¹⁾ or air velocity⁽²⁾ readout via Modbus RTU
- Modbus registers reset function (to factory pre-set values)
- Selectable internal voltage source for PWM output: 3,3 / 12 VDC
- Four LED indicators for the status of the transmitter and the controlled values
- Modbus RTU communication
- Sensor calibration procedure
- Selectable minimum and maximum span
- Selectable analogue / modulating output
- · Aluminium pressure connection nozzles

					Article codes
Codes	Power supply	Maximum power consumption	Nominal power consumption	Imax	Operating range
HPSPF-1K0-2					0-1.000 Pa
HPSPF-2K0-2	18—34 VDC	1,8 W	1,35 W	100 mA	0—2.000 Pa
HPSPF-4K0-2	10 54 000	1,0 W	1,55 W	100 114	0-4.000 Pa
HPSPF-10K-2					0—10.000 Pa
HPSPG-1K0-2	18—34 VDC	1.71 W	1,28 W	95 mA	0-1.000 Pa
HPSPG-2K0-2	18-34 VDC	1,71 W	1,20 W	95 IIIA	0—2.000 Pa
HPSPG-4K0-2	15-24 VAC ±10 %	3,3 W	2,475 W	220 mA	0-4.000 Pa
HPSPG-10K-2	13-24 VAC ±10 %	5,5 W	2,4/3 W	220 IIIA	0—10.000 Pa

	T	echnical specifications
	0-10 VDC	$R_{L} \ge 50 \ k\Omega$
Selectable analogue / modulating output	0—20 mA	$R_{L} \leq 500 \ \Omega$
	0-100 % PWM	PWM Frequency: 1 kHz,R _L \geq 50 k Ω
		Differential pressure
Operating modes		Air volume
		Air velocity
Accuracy		± 2 % of the operating range
Protection standard		IP65 (according to EN 60529)
Enclosure		ASA, grey (RAL9002)
Ambient conditions	Temperature	-5—65 °C
Ambient conditions	Rel. humidity	< 95 % rH (non-condensing)

Wiring and connections

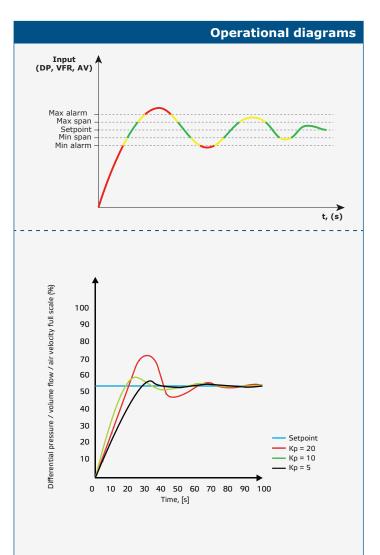
Article type	HPSPF	HPSPO	3
Vin	18-34 VDC	18-34 VDC	13—26 VAC
GND	Ground	Common ground*	AC ~*
А	Modbus F	RTU (RS485), signal A	
/В	Modbus R	TU (RS485), signal /B	
A01	Analogue / modulating or	utput (0—10 VDC / 0—2	20 mA / PWM)
GND	Ground AO1	Common gr	ound*
Connections	Cable cross section		1,5 mm ²

*Attention! The -F version of the product is not suited for 3-wire connection. It has separate grounds for power supply and analogue output. Connecting both grounds together might result in incorrect measurements. Minimum 4 wires are required to connect -F type sensors. The -G version is intended for 3-wire connection and features a 'common ground'. This

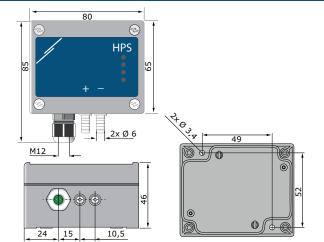
means that the ground of the analogue output is internally connected with the ground of the power supply. For this reason, -G and -F types cannot be used together on the same network. Never connect the common ground of -G type articles to other devices powered by a DC voltage. Doing so might cause permanent damage to the connected devices.

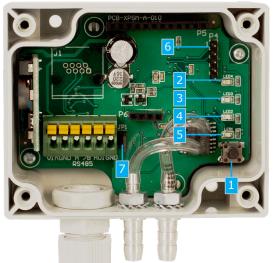
Area of use

- Differential pressure, air velocity⁽¹⁾ or volume flow⁽²⁾ measurement in HVAC applications
- · Overpressurizing applications: clean rooms to avoid particle contamination or staircases for fire safety
- Underpressurizing applications: restaurant kitchens and biohazard laboratories
- Volume flow application: ensuring the minimum legal ventilation rate (m³/h) for buildings


(1) Only when K-factor of fan is known. If K-factor is unknown, air volume flow can be calculated via multiplying the duct cross-sectional area (A) by the air flow velocity (V) using the formula: Q

(2) By using an external PSET-PTX-200 Pitot tube connection set




HPSPX-2 Differential pressure PI controller

Fixing and dimensions

		Settings
1 - Sensor calibration and Modbus register reset tact switch (SW1)		Push to start the Modbus RTU register factory reset or the sensor calibration
	Blinking	Sensor element failure
2 - Red LED4	On	The differential pressure, air volume or air velocity has exceeded the minimum or maximum alarm threshold
3 - Yellow LED3	On	The differential pressure, air volume or air velocity has exceeded the minimum or maximum span threshold
4 - Green LED2	On	The actual differential pressure, air volume or air velocity is stabilized between the minimum span and maximum span
5 - Green LED1	On	Power OK; active Modbus RTU communication
6 - Modbus holding registers reset jumper (P4)*	1 2 3 4 5	Put a jumper onto pins 1 and 2 for at least 20 s to reset holding registers $1-3$
7 - Internal pull-up resistor jumper JP1	**	Connection to internal voltage source

* The reset jumper is not included in the set ** **1** indicates closed position of the jumper.

DBUS

Modbus registers

The Sensistant Modbus configurator allows you to easily monitor and/or configure Modbus parameters.

The parameters of the unit can be monitored / configured through the ${\rm 3SModbus}$ software platform. You can download it from the following link: https://www.sentera.eu/en/3SMCenter

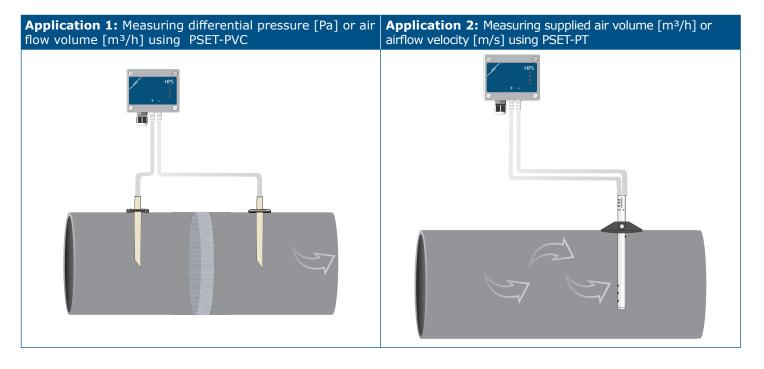
For more information about the Modbus registers, please refer to the product Modbus Register Map.

35

HPSPX-2 Differential pressure PI controller

					Рас	kaging
			W			
Article	Packaging	Length [mm]	Width [mm]	Height [mm]	Net weight	Gross weight
Article	Packaging Unit (1 pc.)					
Article HPSP -2		[mm]	[mm]	[mm]	weight	weight

Standards


CE

• EMC directive 2014/30/EU:

- EMC directive 2014/30/E0:
 EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use EMC requirements Part 1: General requirements
 EN 61326-2-3:2013 Electrical equipment for measurement, control and laboratory use EMC requirements Part 2-3: Particular requirements Test configuration,
- operational conditions and performance criteria for transducers with integrated or remote signal conditioning

• WEEE Directive 2012/19/EC

• RoHs Directive 2011/65/EC

